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The X-chromosome harbors hundreds of disease genes whose
associated diseases predominantly affect males. However, a sub-
set, including neurodevelopmental disorders, Rett syndrome (RTT),
fragile X syndrome, and CDKL5 syndrome, also affects females.
These disorders lack disease-specific treatment. Because female
cells carry two X chromosomes, an emerging treatment strategy
has been to reawaken the healthy allele on the inactive X (Xi).
Here, we focus on methyl-CpG binding protein 2 (MECP2) resto-
ration for RTT and combinatorially target factors in the interac-
tome of Xist, the noncoding RNA responsible for X inactivation.
We identify a mixed modality approach combining an Xist antisense
oligonucleotide and a small-molecule inhibitor of DNA methylation,
which, together, achieve 30,000-fold MECP2 up-regulation from
the Xi in cultured cells. Combining a brain-specific genetic Xist
ablation with short-term 5-aza-2′-deoxycytidine (Aza) treatment
models the synergy in vivo without evident toxicity. The Xi is
selectively reactivated. These experiments provide proof of con-
cept for a mixed modality approach for treating X-linked disorders
in females.
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Diseases caused by a mutation on the mammalian X chro-
mosome affect males and females differently as males have

only one X chromosome and females have two. Female X
chromosomes are, however, subject to a dosage compensation
mechanism in which one X chromosome is inactivated. Because
of “X-chromosome inactivation” (XCI), the female mammal is a
mosaic of cells that expresses either the maternal or paternal X
chromosome (1–3). Thus, heterozygous X-linked mutations
would affect approximately half of a female’s somatic cells. For
gene products with a non–cell-autonomous function, healthy
cells can usually compensate for those expressing the mutation
(e.g., factor VIII for hemophilia). With mutations in gene
products that fulfill a critical role within the cells that produce
them on the other hand, deficits in just half of the body’s somatic
cells can result in a severe disorder. One well-known example is
Rett syndrome (RTT), a human neurodevelopmental disorder
caused by a mutation in the methyl-CpG binding protein 2
(MECP2) (4), a chromatin-associated gene product that is cru-
cial for neuronal development. Whereas males do not survive,
females are typically born and remain symptom-free until the
first or second year of life. Then, symptoms arise that include
motor abnormalities, severe seizures, absent speech, and autism
(5). To date, no disease-specific therapy is available for this
disorder, which affects one in ∼10,000 girls throughout
the world.
Notably, females carry a potential cure within their own cells.

Every affected cell harbors a normal but dormant copy of
MECP2 on the inactive X (Xi) chromosome, which may, in
principle, be reactivated to alleviate disease burden. Intriguingly,
in male RTT mouse models, restoring normal Mecp2 expression
can reverse disease after the onset of symptoms (6, 7). There are,

however, two obstacles to an Xi-reactivation strategy. First, sex
chromosomal dosage compensation is known to be important
throughout development and life: Perturbing XCI by a germline
deletion of the master regulator Xist resulted in inviable female
embryos (8), an epiblast-specific deletion of Xist caused severely
reduced female fitness (9), and a conditional deletion of Xist in
blood caused fully penetrant hematological cancers (10). Per-
turbing dosage balance via Xi reactivation could therefore have
untoward physiological consequences. On the other hand, loss of
Xist and partial reactivation occur naturally in lymphocytes (11),
and may therefore be tolerated in vivo under controlled cir-
cumstances. A second challenge is that the Xi has been difficult
to reactivate via pharmacological means due to multiple parallel
mechanisms of epigenetic silencing (1–3, 12). Progress has been
made in recent years, however. Several siRNA screens identified
several factors regulating Xi stability, but no overlap of candi-
dates was observed between them (13, 14), perhaps because the
screens were not saturating. Others have identified the TGF-β
pathway (15), a synergism between Aurora kinase and DNA
methylation in a primed small-molecule screen (16), as well as a
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synergism between a ribonucleotide reductase subunit (RRM2)
and 5-aza-2′-deoxycytidine (17). In a more direct approach, an
Xist RNA proteomic screen identified more than 100 interacting
proteins and demonstrated that de-repression of the Xi could be
achieved robustly only when two to three interactors were tar-
geted simultaneously (18). In all studies to date, MECP2 resto-
ration has been extremely limited (<<1% of normal levels). Here,
we integrate the existing knowledge and explore new methods of
Xi reactivation. We arrive at a mixed modality approach, in-
cluding an antisense oligonucleotide (ASO) against Xist and an
inhibitor of DNA methylation, the combination of which achieves
a 30,000-fold reactivation of MECP2 from the Xi.

Results
Pharmacological Synergy Through a Mixed Modality Approach.While
the pharmaceutical industry has focused almost exclusively on
targeting proteins, long noncoding RNAs (lncRNAs) have be-
come increasingly attractive as pharmacological targets (19).
Improving ASO technology makes lncRNAs pharmacologically
accessible. ASOs are high-molecular-weight compounds that
have been optimized over the past 50 y through chemical mod-
ifications to acquire greater stability, selectivity, and bio-
availability (20, 21). Since ASOs bind their target through
Watson–Crick base-pairing interactions, they can be rationally
designed and hit previously “undruggable” targets. Notably, ASO
technology has achieved success in treating hypercholesterolemia
(Kynamro) and spinal muscular atrophy (Spinraza).
We asked whether an ASO could also be developed for Xi

reactivation and screened a small ASO library against various
targets of potential interest, including Xist RNA and an anti-
sense transcript to Mecp2 (Mecp2-as) (Fig. 1A, Fig. S1, and
Table S1). In designing the ASOs, we chose phosphorothioate
backbone and locked nucleic acid (LNA) chemistry (22) for its in
vivo and in vitro stability, and increased affinity and selectivity
for RNA targets. All were designed as gapmers, with unmodified
deoxyribonucleotides in the center flanked by 5′ and 3′ terminal
locked nucleotides, to direct RNase-H–mediated cleavage of the
target transcript. We tested each ASO on an immortalized clonal
mouse fibroblast cell line carrying an Mecp2:luciferase knock-in
reporter on the Xi (15, 16). The luciferase reporter provides a
highly sensitive enzymatic detection method with a large dynamic
range. Because previous studies provide strong support for syn-
ergistic Xi reactivation (12, 16–18), we examined the efficacy of
each ASO in the presence of 0.5 μM decitabine [5-aza-2′-deox-
ycytidine (Aza)] for 3 d. Notably, Aza combinations with ASOs
against Mecp2-as or various nearby ASOs yielded inconsistent,
low, or no Mecp2:luciferase reactivation relative to untreated
samples or Aza-only samples. Remarkably, however, the Xist
ASO + Aza combination showed a robust, reproducible response
equivalent to 2% of normal MECP2 levels on the active X (Xa)
(Fig. 1B and Fig. S1). These data suggest that targeting Xist
RNA, together with DNA methylation, may be an effective
method of achieving partial Xi reactivation.
Next, we performed the reciprocal analysis and asked whether

combining the Xist ASO with small-molecule inhibitors of other
epigenetic pathways may be efficacious. We tested commercially
available compounds for factors identified in an Xist proteomic
study (18) (Fig. 1C and Table S2). In combination with the Xist
ASO, inhibitors of EZH2 (EPZ6438) and Aurora kinase
(VX680) showed varying degrees of up-regulation (Fig. 1D).
These inhibitors were previously identified as potential Xi
reactivators in independent screens (13, 16). Intriguingly, none
of the inhibitors against recently identified targets demonstrated
an efficacy that rivaled Aza + Xist ASO (Fig. 1D), although we
limited testing to Xist interactors for which small-molecule
probes were available. Thus, in reciprocal tests of ASOs and
small-molecule inhibitors, Xist ASO + Aza emerged as the top
candidate. This mixed modality combination yielded a level of

reactivation not previously seen. Henceforth, we focus on char-
acterization of this combination.

The Xist ASO + Aza Synergistic Duo. To exclude off-target effects,
we created three Xist gapmers (1–3) that target different regions
of exon 1 (Fig. 2A). Introduction of any single Xist ASO at
20 nM by lipofectamine transfection resulted in >95% Xist
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Fig. 1. Targeting the Xist interactome using a mixed modality approach.
(A) Schematic representation of the directionality and locations of different
tested ASOs on the X chromosome. (B) Luciferase assay results [corrected
counts per second (CCPS)] normalized to the amount of cells of Xi-Mecp2-Luc
MEFs treated with 20 nM ASO (lipofectamine transfection) and 0.5 μM Aza
over 3 d. (C) List of the inhibitors tested and their protein targets. (D) Lu-
ciferase assay results (CCPS) normalized to cell number after treatment with
different concentrations of small-molecule inhibitors (Table S2) and Xist ASO
at 20 nM ASO (lipofectamine transfection) over 3 d.
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depletion in mouse embryonic fibroblasts (MEFs) for 3–5 d (Fig.
2B and Fig. S2A). To test the Xist ASO + Aza combinations and
look for potential Xi reactivation of Mecp2, we used the cell line
carrying the Mecp2:luciferase reporter on the Xi. We examined
five different Aza concentrations given as a single dose on day
0 against a fixed 20 nM concentration of the Xist (gapmer 1 was
selected for further studies) or control [scrambled (Scr)] ASO
and examined cells over a 3-d treatment period. Whereas Aza
concentrations between 0 and 0.5 μM were tolerated, higher
concentrations (1.0 and 2.5 μM) resulted in increased cell death
(Fig. 2C). At 20 nM, the Xist ASO was not toxic relative to the
control ASO (Fig. 2C, compare Top Left versus Bottom Left).
These data suggest that the combination of 20 nM ASO and a
single pulse of 0.5 μM Aza (its IC50), would be well tolerated by
MEF cells in culture. Notably, an Aza pulse was also used to
prime cells in a small-molecule screen (16).

After 3 d of treatment (Fig. 2D, Left), neither the control Scr
ASO (20 nM) nor Xist ASO (20 nM gapmer 1) resulted in
measurable luminescent counts per second. Application of Aza
(0.5 μM) by itself caused the previously reported baseline level of
Mecp2:luciferase reactivation (13, 16, 17). On the other hand,
combining this Xist ASO with Aza resulted in a significant syn-
ergistic increase, in accordance with the in vivo data. This level of
increase was equivalent to 1.8% of the theoretical maximum
(i.e., ∼2% of the protein level of Mecp2:luciferase when it was
carried on the expressed Xa). This is equivalent to a 12,000-fold
increase in Xi-Mecp2 expression and is considerably greater than
the 600-fold up-regulation observed in a previous screen (16).
When cells were treated for 5 d with the Xist ASO + Aza
combination, Mecp2:luciferase up-regulation increased to as
much as 2.0–3.5% (average of 2.5%, n = 3; Fig. 2D, Right) or up
to 30,000-fold of Xi levels. Single treatments with the ASO or
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Fig. 2. Synergistic Xi reactivation by targeting Xist and DNA methylation in a cellular model. (A) Schematic representation of the Xist locus, with the LoxP
sites of the conditional deletion allele (triangles) and regions targeted by Xist ASOs 1, 2, and 3. Conserved Xist repeat elements A–E are indicated. (B) qPCR
results depicting the fold change in Xist RNA expression in cells treated with negative control ASO (Scr) and Xist ASO compared with untreated cells for 3 d
(n = 3, replicates), normalized to Gapdh. Error bars represent SEM. (C) Bright-field microscope images at 4× magnification of Xi-Mecp2-Luc MEF cells treated
with 20 nM Xist or control ASO, plus indicated concentrations of Aza. (D) Luciferase assay results of Xi-Mecp2-Luc MEFs treated with 20 nM Xist ASO and
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the Mann–Whitney U test (two-sided). Error bars represent SEM.
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Aza remained significantly lower. To exclude off-target effects,
two other Xist gapmers (gapmers 2 and 3; Fig. 2A) were tested
and were also found to up-regulate MECP2 (Fig. S2 B–D).

Transcriptomic Analysis Indicates Selective Xi Reactivation. We
asked if the Xist ASO + Aza combination achieved effects on the
Xi beyond Mecp2 reactivation. The Xi-reactivation strategy
would have the potential to treat a number of X-linked diseases,
including those caused by mutations of CDKL5, KIAA2022,
USP9X, SMC1a, HDAC8, and FMR1. We tested the Xist ASO +
Aza combination on a first generation (F1) hybrid fibroblast
line in which the Xi is of Mus musculus (mus) strain origin and

the Xa is of Mus casteneus (cas) strain origin (23). Between the
Xmus and Xcas, there are over 600,000 X-linked sequence poly-
morphisms that enable determination of allelic origin (24). We
established an allele-specific pipeline for RNA-sequencing
(RNA-seq) analysis (Fig. 3A). Among 1,063 X-linked genes,
only 510 were expressed [fragments per kilobase of transcript per
million mapped reads (FPKM) > 0] in the fibroblast line. Among
these, we considered only the 315 genes with a total number of
allelic reads >12. Of these, 243 were considered to be subject to
XCI, with a mus fraction of <1/11. RNA-seq analysis showed
that Xistcas was not expressed from the Xa and that Xistmus ex-
pression from the Xi was knocked down by the ASO to nearly
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adjusted scales (brackets) set for Xi (mus: 0–0.25) or Xa (cas: 0–1) are shown within each gene.
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undetectable levels (Fig. 3B). As a result, cumulative density plot
(CDP) analysis of X-gene expression showed a significant right
shift in Xi expression (allelic reads of Xi/Xi + Xa) when cells
were treated with the Xist ASO + Aza combination in compar-
ison to both the Scr ASO treatment and the Scr ASO + Aza
treatment (Fig. 3C). Heat map (Fig. 3D) and scatter plot (Fig.
3E) analyses revealed a substantial number of Xi-reactivated
genes in the Xist ASO + Aza-treated samples relative to treat-
ment with Scr ASO and Aza. Specific genic examples also
demonstrated the extent of Xi reactivation seen specifically in
the combination treatment (Fig. 3F). RNA-seq did not offer
enough sensitivity to see reactivation of Mecp2, especially in fi-
broblasts, where Mecp2 is not expressed as highly as in neurons
(Mecp2 is not fused to luciferase in the hybrid cell line). Unlike
the luciferase assay, a 2–5% increase in RNA-seq reads (FPKM)
may be difficult to distinguish from noise. However, taken to-
gether, these data show a selective reactivation of the Xi relative
to the Xa and the rest of the genome. They highlight the po-
tential for treating other diseases and affirmed the idea of
pharmacological synergy between depleting Xist RNA and
treating with Aza.

Female Mice Lacking Xist in the Brain Live a Normal Life Span Without
Reduced Fitness. In view of the reduced fitness of the mice lacking
Xist RNA (9, 10), concerns might be raised for any treatment
involving Xist depletion. Therefore, we next explored whether
Xist loss and associated X-chromosome dosage change could be
tolerated in the brain, the target organ of various X-linked
neurodevelopmental disorders, including RTT, CDKL5 syn-
drome, and fragile X syndrome. Using a Nestin-Cre driver (25),
we conditionally knocked out Xist in embryonic brain cells at
embryonic day 11, a developmental stage long after establish-
ment of XCI (Fig. 4A). Our cross resulted in heterozygous
F1 females in whom Xist was deleted from the Xi in half of all
neuronal cells. We then generated homozygously deleted
F2 mice by backcrossing F1 XistΔ/Y, Nestin-Cre male mice to
female Xist2lox/2lox mice. We confirmed the deletions by RNA
FISH and RT-qPCR for Xist expression. In F1 heterozygous
females, the number of Xist RNA foci was reduced by half in the
brain (Fig. S3 A and B), as were relative total Xist levels (Fig.
4B). In F2 homozygous females, Xist expression was absent in
the brain (Fig. 4 B and C). In the liver, where Nestin-Cre was not
expressed, Xist expression was unaltered.
We then asked whether brain-specific Xist deletion resulted in

an overt phenotype in mice. In contrast to mice bearing Xist
deletions in blood cells and the whole body (9, 10), both F1 and
F2 Xist-mutant females were healthy and exhibited a life span
similar to that of wild-type littermates (Fig. 4D). There was no
difference in gait or mobility, as the mice showed equal perfor-
mance on the rotarod (Fig. 4E). Some differences, such as in
body weight, between mutant and wild-type mice were found, but
these could be attributed exclusively to the Nestin-Cre knock-in
(26) (Fig. S3 C and D). Notably, Nestin-Cre males, which should
not be affected by an Xist deletion, nevertheless showed reduced
size. The open-field and elevated plus maze tests also showed
differences (Fig. S4). Because the cross as set up (Fig. 4A) ren-
dered the Nestin-Cre allele and Xist deletions inseparable, the
phenotype could be due to either the presence of Nestin-Cre
(27) or the absence of Xist. Through an additional cross be-
tween an Xist2lox/+ female and a Nestin-Cre male to separate the
Nestin-Cre genotype from the Xist2lox genotype (Fig. S5), we
attributed observed differences strictly to Nestin-Cre. Repeat
open-field testing revealed the same significant differences be-
tween Xist2lox versus Nestin-Cre (P < 0.02), whereas the dif-
ference between XistΔ/+ versus Nestin-Cre was insignificant (P >
0.78) (Fig. 4F). Because an intercross of F1 animals yielded
F2 animals of nonuniform backgrounds, the F2 generation was
not subjected to behavior testing.

Given minimal phenotypic differences, we performed RNA-
seq analysis on the brains of F1 XistΔ/+ and F2 XistΔ/Δ females
at 1 y of age and looked for deviation of X-linked and autosomal
gene expression relative to brains of Xist2lox/+ and Xist2lox/2lox
control females. Because the mice lacked allelic information that
would allow distinguishing Xi from Xa expression, we analyzed
composite (both alleles) gene activities on the X chromosome
and displayed transcriptomic data in CDPs for fold changes
between test and control brains (9) (Fig. 4G and Fig. S6A).
Consistent with that observed in blood (10), loss of Xist resulted
in up-regulation of X-linked genes relative to autosomes in two
of three animals. Variability occurred between mice, as X up-
regulation was not observed in animal 1. Thus, the Xi in the
brain remains relatively stable despite deleting Xist. Reac-
tivation, when it occurs, tends to be partial and variable in
the brain.

Modeling Pharmacological Intervention in the Xist-Deleted Mouse.
To assess whether Aza could synergize with the Xist deletion to
destabilize the Xi in the brain, we treated XistΔ/Δ female mice at
5 wk of age, the approximate age at which RTT phenotypes are
clearly manifested. Cognizant of the cytotoxic effects of long-
term Aza treatment (28), we tested short-term treatment on
the principle that DNA methylation states are stably propagated,
even through mitotic divisions (29, 30). Because Aza can cross
the blood–brain barrier (31), we administered three sequential
Aza pulses via i.p. injections over the course of 1 wk and then
followed the health of these mice over time.
To examine changes in gene expression, we performed tran-

scriptomic analysis on brain (target organ) and liver (control
organ) harvested from a subset of mice at 2 wk after drug
treatment. Three biological replicates were examined (Fig. 5 and
Fig. S6). In the liver, where Xist was intact, X and autosomal
gene expression remained balanced, even after triple-Aza
treatment (Fig. 5A and Fig. S6B). Second, Aza treatment also
did not result in X-to-autosomal gene imbalance in the Xist2lox/
2lox brain (Fig. 5A). Three Aza pulses therefore did not result in
global changes in X-linked or autosomal gene expression in Xist-
positive tissues. Furthermore, deleting Xist alone had a minimal,
variable effect on X-linked gene expression (Figs. 4G and 5A).
On the other hand, combining the Xist deletion with pulse Aza
treatment resulted in highly significant positive changes in X-
linked gene expression relative to autosomal expression. To-
gether, these data demonstrate that Aza treatment potentiates
the effect of the Xist deletion in the brain, supporting a strong
synergy between Xist and DNA methylation.
Notably, a short-term pulse treatment with Aza administered

systemically (i.p.) was sufficient for Xist synergy across the
blood–brain barrier over a 2-wk time frame. This is promising
and suggests that Aza toxicity associated with long-term admin-
istration (28) could potentially be avoided. To determine if
short-term treatment resulted in long-term toxicity, we followed
treated animals over 1 y and noted no measurable differences in
health and life span (Fig. 5B). Indeed, all mice have advanced to
1–2 y of age. At the time of treatment, the body weight of
Xist2lox/2lox mice was, on average, higher than that of XistΔ/Δ
mice, due to the Nestin-Cre background. Treatment did not
introduce significant differences between weights of Aza- versus
saline-treated mice (Fig. 5C). We conclude that short-term Aza
treatment in Xist-deleted animals leads to a partial up-regulation
of the X chromosome that is tolerated in vivo during the period
of testing.

Discussion
The Xi is a reservoir of >1,000 functional genes that could, in
principle, be tapped to treat disorders caused by mutations on
the Xa. In the present study, we set out to define a pharmaco-
logical approach for selective Xi reactivation to restore expression
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of missing X-linked gene products. We focused on RTT and
restoration of MECP2, but our Xi-reactivation platform is ag-
nostic to both the disease and the gene. Any gene residing
on the X chromosome could be targeted in phenotypic,
heterozygous females.
By targeting factors in the Xist interactome, we found that

combining two drug modalities, a small molecule (Aza) + an
ASO (Xist), achieved an unprecedented level of Xi reactivation
and MECP2 protein up-regulation. The 2–5% up-regulation is
equivalent to a 12,000- to 30,000-fold increase in Xi-Mecp2 ex-
pression, is considerably greater than the 600-fold up-regulation
observed in a previous screen (16), and thus marks significant
progress for the Xi-reactivation platform. In vivo data have
suggested that even 5% of normal Mecp2 levels can have a
profound impact on survival and overall function, as a previous
report showed a slightly milder phenotype of Mecp2-lox-stop-lox
male mice, due to their “leaky” termination cassette that enabled
read-through Mecp2 transcription (7). Thus, while the degree of

up-regulation by the Xist + Aza combination did not exceed 5%
in these experiments, this degree of restoration could have sig-
nificant phenotypic consequences in vivo. Moreover, because our
treatment period was brief (3–5 d) and the tolerable Aza con-
centrations in cell culture (0.5 μM; Fig. 2C) are still higher than
concentrations typically used for mouse i.p. injections (32), in
vivo outcomes may be enhanced by applying more concentrated
doses. Our present analysis cannot distinguish between high-
level MECP2 reactivation from a few cells versus low-level
reactivation from a large percentage of cells. The two possibili-
ties would have different physiological implications, but both are
potentially relevant from a therapeutic standpoint, as MECP2
has been identified to have both cell-autonomous and non–cell-
autonomous functions (33).
ASO drugs are generally more specific and have the advantage

that information on pharmacokinetics and toxicity studies for
chemically similar ASOs is transferable and cumulative. Thus,
ASOs may have a more favorable path to regulatory approval.
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Fig. 5. Modeling synergistic Xi reactivation in a genetic model. Control and test mice underwent short-term Aza treatment. Aza was administered i.p. three
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Small molecules generally have lower selectivity and may face
steeper hurdles in the approval process within the US Food and
Drug Administration (FDA). By mixing modalities, our ap-
proach may potentially anticipate a more streamlined approach
to FDA approval. We also note that Aza has already been ap-
proved by the FDA for other disease indications (myelodys-
plastic syndrome and acute myeloid leukemia) (34).
Furthermore, our present in vivo data indicate that Aza need not
be given continuously to have an impact on Xi reactivation in the
brain, nor does Aza need to be injected into the target organ.
Three short pulses delivered systemically were sufficient to in-
duce Xi reactivation after 2 wk in the Xist-deleted brain. Unlike
LNA-based ASOs, which have tissue half-lives of several weeks
(22), Aza is known to have a very short half-life (<1 h in plasma)
(35). However, once DNA is demethylated, the state may be
stable (30). Future work will determine the duration of the effect
and whether periodic Aza or ASO boosters might be necessary to
maintain reactivation.
Finally, partial Xi reactivation in the brain does not cause

apparent morbidity or mortality in the mouse. An important next
step will be to test the drug in a RRT-specific disease model to
look for phenotypic improvement. ASOs are well suited for the

treatment of neurological diseases, and their delivery may be
targeted to the central nervous system through intra-
cerebroventricular or intrathecal injection (21), which has been
considered acceptable and safe for serious disease such as ALS
(36). Another critical next step will be the development of a
better female mouse model that recapitulates the RTT disease
severity (37) to test our Xi reactivation platform in vivo.

Materials and Methods
Animal procedures were approved by and performed in compliance with the
Institutional Animal Care and Use Committee of Massachusetts General
Hospital. Tissue culture, reactivation assays, mouse behavior analysis, and
FISHwere performed using standard procedures. Amore detailed description
of treatments and analysis is provided in SI Materials and Methods.
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